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Abstract. Exact dynamical properties are discussed for thé Ising model around the
multicritical point (MCP). It is found that the relation of relaxations between the non-equilibrium
remanent magnetization(s) and the equilibrium autocorrelation functiarir) at the MCP is
different from that at the pure critical point. The dynamic critical exponent for the ferromagnetic
ordering defined byn(t) ~ t—*» and that for the spin glass ordering definedday) ~ %
become identical at the MCP. Accurate numerical calculations for them are performed in two
and three dimensions using the non-equilibrium relaxation analysis. The MCP is located at
pmc = 0.8872+ 0.0008 and the exponent is estimatedigs = A, = 0.021+ 0.001 for the
square lattice. They are estimatedgg = 0.76734+0.0003 and\,,, = 1, = 0.0904 0.003 for

the simple cubic lattice.

1. Introduction

Recently, the physics of disordered systems has proved a most fascinating subject for
theorists and experimentalists. The magnetic materials with impurities such as spin glass
(SG) systems are an example of a typical system in this category. In the theory of spin
glasses, the mean-field theory presented a unified picture of the SG phase [1, 2]. Studies on
the +J Ising model in finite dimensions play an important role in the comparison with real
spin glasses and the analysis of slow dynamics. It has been used in studies on the existence of
the SG transition ir/ > 3 [3-5], the absence of the re-entrant transition [6—8] and the weak
universality of the ferromagnetic (FM) critical exponents [7, 9]. An important issue in real
SG materials is the competition between SG and FM orderings, especially the multicritical
phenomenon of paramagnetic (PM), FM and SG phases [7,9-12]. Critical properties for
static quantities have been studied explicitly around the multi-critical point (MCP), while
those for dynamical quantities remain an open problem at present. Slow dynamics is one of
the peculiar properties characterizing the SG phase [13, 14]. The waiting time dependence
of relaxation, which is called the ageing, is a typical realization of slow dynamics [15-17].

It has been pointed out that there exists a dynamically singular phase called the Griffiths
phase between the critical temperature of the pure FM system and the phase boundary of
the low-temperature phase (FM or SG) [18, 19]. Little has been mentioned about the effect
of randomness on the dynamic critical phenomena.

The dynamic critical exponent has been investigated for the pure FM system. The
dynamic scaling hypothesis reveals a relation between the expanemd the non-
equilibrium critical relaxation of magnetization(z) [20]. Practically, the relaxation rate
is very sensitive to the estimated critical temperature around the true critical point. Thus,
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one should carefully determine the critical temperature to estimate the exponent precisely.
An efficient Monte Carlo technique has been developed to estimate the critical point and
the dynamic critical exponent by using the non-equilibrium relaxation of the remanent
magnetization from the all-up state [21-25]. It is applied to both two- and three-dimensional
systems. For the SG case, the dynamic critical exponent was estimated from the equilibrium
autocorrelation functiog (¢) by Monte Carlo simulations [3, 19, 26]; the power of relaxation

for ¢(¢) is related to the exponents associated with the SG ordering. From a similar scaling
relation, this power is twice as large as that fo¢) in the pure FM case. The dynamics

of these quantities around the MCP has remained an open problem.

In this paper, we study the dynamical properties of thé Ising model around the
MCP. Recently, an exact dynamical equation called the ageing relation is developed for
Ising spin glasses [27, 28] by using the method of gauge transformation in random spin
systems [6, 29, 30]. We derive exact relations for dynamic critical exponents at the MCP
using the aging relation. The relation for the powers of relaxation betwaenandgq(¢)
changes just at the MCP. The relaxation rate of the FM ordering becomes identical with
that of the SG ordering. This allows a unified viewpoint of the critical relaxation in the
whole parameter region for theJ Ising model. We estimate the location of the MCP and
the dynamic exponent for two and three dimensions using the non-equilibrium relaxation
method.

This paper is organized as follows. In section 2, the model is defined, and the static
properties are introduced briefly. In section 3, properties of the critical relaxation are
reviewed, and the exact relations for the dynamics around the MCP are derived. Numerical
estimations for the MCP and dynamic exponents are presented in section 4. Section 5 is
devoted to summary and remarks.

2. Static properties for the +J Ising model

The model which we consider is

E=—) J;SiS (S; = +1) (2.1)
(i)
where the summation is taken over all nearest-neighbouring pairs on a lattice; throughout
we do not restrict the shape and the dimensions of the lattice, however, one may suppose
it as ad-dimensional hypercubic lattice. The exchange interacfigris a random variable
taking values oft-J or —J with the probability distribution

p Jij=J)
1-p (Jij =—=J).

In three or more dimensions including the mean-field model, the topology op#ie
phase diagram is expected as in figure 1 where the PM, the FM and the SG phases appear
[1, 6, 7, 9]. In two dimensions, the SG phase would not exist [1, 3, 4].

The dotted curve indicates the Nishimori-line [6],

A 2.3)
kBT 2 1-— P
on which the following properties are found.
e The energy and the upper bound of the specific heat are expressed by analytic functions
of temperaturerl’.
e The phase boundary between the FM and the SG (or PM) phases below this line
would be almost vertical to thg-axis. [7-9, 32]

P(Jij) = (2.2)
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Figure 1. A typical p—T phase diagram for the-J Ising model ind > 3. The PM, the FM
and SG phases are indicated. The dotted curve is the Nishimori-line.

Table 1. Previous estimations for the location of the MCP in two and three dimensions together
with the present results.

Reference lattice pmc Tme

[7] square  0.889(2) 0.961(9) Numerical transfer matrix
[12] square  0.886(3) 0.975(6) Series expansion

Present result square  0.8872(8) 0.970(4) Non-equilibrium method
[9] cubic 0.767(2) 1.680(25) MC Renormalization Group
[10] cubic 0.7656(20) 1.690(16) Series expansion

Present result  cubic 0.7673(4) 1.676(3) Non-equilibrium method

e The line is likely to intersect the MCP.
We define the temperature of the Nishimori-line Bsfrom equation (2.3). The shape
of phase diagrams are investigated by numerical methods in two [7,12,31-33] and three
dimensions [9-11]. The locations of the MC@&imc, Tmc), €stimated so far are listed in
table 1.

The weak universality, the constantnessgf, v /v, ..., for FM critical exponents
along the boundary of the FM phase was pointed out by the Monte Carlo renormalization
group [9] and numerical transfer matrix calculations [7]. While the series expansion method
provided non-universal behaviour forjust at the MCP [10, 12].

3. Dynamic scaling for the+J Ising model

We study the critical relaxation at the MCP using the non-equilibrium process. Dynamic
critical exponents have been investigated for the pure FM and the SG cases. First, let us
review the critical relaxation for the pure FM case. Some estimations of the dynamic critical
exponentz in Monte Carlo simulation have been achieved for the FM critical point owing

to the non-equilibrium relaxation of the remanent magnetization [23-25],

m(t) = (S; ()" (3.1)

where(- - -)F denotes a dynamical average in which the system is prepared to be the all-up
state atr = 0, and relaxes in a heat bath of temperatfiteThe asymptotic behaviour of
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m(t) is expected as

Meq (T < To)
m(t) — § ¢ (T =T (3.2)
0 (T > Tp)

wheremeq represents the equilibrium spontaneous magnetization per site. The asymptotic
form O for T > T does not mean that the function is always equal to zero but indicates a
decay much faster than power-law. Then the dynamic scaling hypothesis [20]

T.—T
mt, e, L) = L~ P"m(LY e, L™1) £ = °T (3.3)
Cc
reveals the relation of exponents
Am = ﬁ (3.4)
ya%

Recent accurate estimations for dynamic critical exponents are achieved in this way [23, 24];
for two dimensionsy,, is estimated to be 0.0577(3), which implies= 2.16510) with the
exact values/v = 0.125 [24] and for three dimensions,, = 0.250(2), that is,z = 2.06(2)
assuming thag/v = 0.515 [23].

Note that there is another dynamical function, the equilibrium autocorrelation function,

q(t) = (5i(1)S;(0))eq (3.5)
which also decays with a power-law at the FM critical point;

mg (T < Tp)
qt) > { ¢t (T =Tp) (3.6)
0 (T > Tp).
Using a similar dynamic scaling, one obtains the relation
rg = 2—’3 (3.7)
ray
Thus, 2, and, are twice as different in the pure FM case.
In the quenched random system, physical quantities are defined as
m(1) = [(5;()) ] (3.8)
q(t) = [(Si()Si(0))eqlc (3.9)

where [--]c denotes the average over quenched bond configurations. The asymptotic
behaviour (3.2) and the scaling form (3.3) faKz) are correct at any critical point along

the FM phase boundary. Then we derive the same relation as (3.4) [25]. Note that critical
exponents8 andv in these equations are defined with the scaling field (T, — T')/ Tz.

The scaling field is not unique in the random case and one can define another scaling form
instead of (3.3) with a different scaling field such@s— p.)/p.. However, the ratigg/v

and the exponent are independent of the scaling field but depend on the critical point
itself, as does the relation (3.4). In the FM regime;- 1 (see figure 1), we expect that the
fluctuation of the spontaneous magnetization among samples of bond configurations does
not diverge in the thermodynamic limit even at the critical point except for the MCP. This
means

[(S)%]c = [(S1)]3 (3.10)
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Table 2. Previous estimations for the dynamic critical expongefdr three-dimensional model.

Reference Ty Aq z

[3] 1.2 0.07 5

[19] 1.175 0.065(5) 6.0(8)
[26] 1.175 0.061(9) 5.85(30)

for N — oo; here we assume that the spontaneous magnetization is measured under
infinitesimal magnetic field. If this is true, the asymptotic behaviour (3.6) is also correct in
the random case and the same relation as (3.7) holds.

Even on the boundary below the MCP which separates the FM and the SG (or PM)
phases, equations (3.2) and (3.3)7a0r) would be correct where the scaling field is modified
appropriately. Ird > 3, g(¢) remains non-zero finite far— oo, and gives nothing for the
critical relaxation. Ind > 2, equations (3.6) and (3.7) would be satisfied if the SG ordering
is absent in the vicinity of the FM phase.

In the SG regimep ~ %, m(r) does not remain finite for — oo at any temperature,
and we have nothing about,. The functiong () approaches the SG order paramedeg.
Following the dynamic scaling hypothesis (tilde exponents are those for SG ordering)

g(t,e, L) = L™Pg(LY%, L% (3.11)
we obtain
=L (3.12)
ya%

This exponent was estimated for the three-dimensional systerrpvwhtl'% by several Monte
Carlo simulations [3, 19, 26] (see table 2).

The relations for FM dynamic exponents, (3.4) and (3.7), would stay along the phase
boundaries from the pure case up to the MCP in figure 1, and so does the relation for SG
ones (3.12) fronp = % up to the MCP; it is not clear whether the values of exponents are
universal or not. What happens for them just at the MCP? Here we derive exact relations
using the ageing relation

[(8; (¢ + tw) S (tw)) TTe = [(S; (¢ + 1w) S; (tw)) ] (3.13)
which was previously derived [28] for any concentratjpnany temperatur&, any waiting
time #y, any time intervat and any lattice size. The brackgt -)”» indicates the dynamical
average starting from the equilibrium state for the temperafyi(gvhich is usually different
from the temperature of the heat bath defined by

_ 2J/kg
" loglp/(1 - p)]’

On the Nishimori-line T = 7,,), (- - -)™» becomes the equilibrium dynamical avergge )eq
[27, 28],

(3.14)

[(Si (2 + 1) Si (t)) 7], = [(S: () Si (0))eglc = g (1). (3.15)
Settingt, — 0, we obtain an exact dynamical relation along the Nishimori-line,
m(t) = q(t). (3.16)

With the same scaling forms as (3.3) and (3.11) aléng 7,, equation (3.16) provides
L m(LY e, L=%t) = LPPG(LY%, L™%r) (3.17)
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for any L, t ande (T or p). The scaling fielce in equation (3.17) can be chosen both as
e =(p— pmc)/Pmc @and ase = (T — T)/ T Since they are of the same order around the
MCP on the Nishimori-line ind > 2. Thus, at the MCPe(= 0), one obtains

A = Ag (3.18)
=12 (3.19)
B/v=pB/v. (3.20)

Note that the Nishimori-line does not enter the SG phase but just touches it at the MCP [6, 8].
Since exponent$ and 3 are defined through the scaling fieddand depend on the way to
approach the criticality, these exponents in equation (3.17) are not associated with the SG
ordering. On the other hand, the dynamic exporieand the ratig /7 are defined through
the SG correlation length instead of the scaling field. They are independent of the way to
approach the criticality, and characterized by the criticality itself. Therefore, expohents
and 8/ are associated with the SG ordering at the MCP. Equations (3.18)—(3.20) relate
exponents of FM ordering and SG ordering at the MCP.

The ageing relation is valid for other gauge symmetric systems such as the Sherrington—
Kirkpatrick model [34], the gauge glass model and so on [29]. Dynamical relations (3.16)—
(3.19) are also valid for these models.

4. Numerical estimations of dynamic critical exponents

In this section, we estimate dynamic critical exponexjsat the MCP for two and three
dimensions. We perform Monte Carlo simulations for the single spin—flip Metropolis
dynamics along the Nishimori-line, and calculate non-equilibrium remanent magnetizations
m(t) from the all-up state. We parametrize the points to calculate by the concentration
p. The temperature can be obtained by equation (2.3). Because of equation (3.16), this
simulation also has the meaning of the calculation for equilibrium autocorrelation functions
q(t), and the estimation fox,,.

Since the relaxation rate is sensitive to the concentration (temperature) around the critical
point, we need to estimate it accurately. In the non-equilibrium relaxation, the power-law
in the asymptotic regime only appears at the critical point. The local exponent is defined
by

dlogm(z)

A) = dlogr 4.1)
approaches ta.,, asymptotically at the MCP, while it approaches to Ocorout of the
criticality. Therefore, one can determine the MCP at which the linearity is best in the plot
of A(¢) to 1/¢. Practically,A(?) is estimated by the least square fitting of ta@) to logz
in a finite intervalt — At <t <t + At of steps, where\r is chosen appropriately.

In this estimation, it is not necessary to be cautious of the slow relaxation in the Griffiths
phase. The Griffiths phase is expected to exist in the region above the low-temperature
phases (FM and SG) fop < 1. Half of the selected data points in our calculation are
located in the Griffiths phase, and the relaxation would be faster than power but slower
than exponential on these points. Even &@, approacheso for t+ — oo, and the same
criterion as in the pure case can be applied.

Since steps for equilibration are not necessary to average physical quantities in non-
equilibrium process, these steps can be saved and no difficulties originating from slow
relaxation occur even in the simulations for large systems. The finite-size effect is often
easily eliminated because the size dependence at fixed time decays exponentially.
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Table 3. The parameters of simulations on the square lattice. The number of different bond
configurations is denoted hY,. The simulation is made up to 750 steps for each concentration.
For each bond configuration 20 independent runs are performed.

p lattice size Ny

0.8830  2501x 2500 160

2001 x 2000 320
0.8850  2501x 2500 320

2001 x 2000 320
0.8860  2501x 2500 384
0.8865 2501x 2500 3648
0.8870 2501x 2500 3648
0.8875 2501x 2500 3840
0.8880  2501x 2500 384
0.8890  2501x 2500 160

2001 x 2000 320

4.1. Result for two dimensions

Simulations are performed on the square lattice. The typical size is 52800 with

the screw boundary condition. Several pointspoéire selected around the expected MCP

on the Nishimori-line to locate the MCP. At each calculation point, we choose several
hundred to several thousand independent bond configurations. For each bond configuration,
20 independent Monte Carlo runs are performed. Furthér) is averaged over all sites.

In total several tens of thousands to hundreds of thousands of samples are used for the
statistical average ofi(¢) for each time step.

The simulation program uses an independent-spin coding technique [35-37] and
shuffling technique [38]. Lewis—Payne-type pseudorandom number was used [39, 37, 40].
Details of the program are given in [25]. The simulations are made on Fujitsu VPP500/40,
and the performance is 556 MUPS (million update per second) per processor with
magnetization counting at every step. The performance becomes 773 MUPS only for spin
update.

We observe 750 Monte Carlo stepsmafr) from the all-up state. This time interval is
determined in preliminary calculations to resolve the criticality for the present concentration
(and the temperature) difference. The details of the simulations are shown in table 3. The
number of totally updated spins in the simulation in table 328% 10%. It takes about 600
single-processor hours on VPP. Two lattices, 2502500 and 200X 2000, are included
in table 3. Up to 750 steps, we confirmed that 1501500 is large enough for the present
accuracy. Thus the results from these lattices are averaged together.

Estimated values ofz(¢) are shown in figures 2 for three typical values mf For
each point of concentratior,(r) is estimated from the least-square fitting of data in the
time interval of 50 steps. Calculatedr) are plotted in figures 3. It is clearly observed in
this figure that the curves fgp < 0.8865 turn up when /r goes to zero—indicating the
PM phase in this region—and the curves for> 0.8880 turn down—indicating the FM
phase (see figure B)). This means that the critical point exists itB865 < p < 0.8880.
Consequently, the estimated concentration of the MCPBgjs = 0.8872+ 0.0008. This
means thaf,, = 0.9704 0.004. It is consistent with the results of the numerical transfer
matrix methodp,: = 0.8892) and series expansion,. = 0.886(3) (see table 1).

Note that the error regior0.0008 is not statistical. The extrapolated values.@h to
1/t = 0 can safely be concluded that0@1+ 0.001, which is the present estimation for
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Figure 2. The estimated values @i (z) in two dimensions at three values pfwith (a) linear
scale and If) log—log scale. Three curves correspondpto= 0.885, 0.887 and 0.889 from
bottom to top.

Am(= Ag). If one assumes the weak universality along the FM phase boungarys= %

(the value atp = 1) holds andz = z = 6.0 £ 0.3. These exponents are summarized in
table 4 together with those obtained so far at other points in the phase diagram. Exponents
for the SG ordering make no sense in two dimensions, if no SG phase exists.
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Figure 3. The estimated values af(r) in two dimensions;lf) is a magnified figure ofg). The
values ofp are given in the figures.
4.2. Result for three dimensions

Simulations are performed on the simple cubic lattice. The lattice size is< @l x 162
with the screw boundary condition. This size is confirmed to be large enough for the
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Table 4. The present estimation for the dynamic critical exponent in two dimensions at
pme = 0.8872 with the previous estimations at= 1 (the pure FM case) [24].

P Am Ag Z,Z

1 0.0577(3) 0.1154(6) 2.165(10)
pme  0.021(1)  0.021(1)  6.0(3)

Table 5. The parameters of simulations on the simple cubic lattice. The number of bond
configurations is denoted hy;,. The simulation is made up tgax Steps for each concentration.
For each bond configuratio?N, independent runs are performed.

4 max Np N,

0.7650 2000 224 5
0.7660 5000 320 4
0.7665 10000 800 2
0.7668 10000 512 10
0.7670 10000 1312 10
0.7672 20000 256 5
0.7673 10000 1024 10
0.7674 20000 256 5
0.7675 10000 800 2
0.7677 20000 256 5
0.7680 5000 320 4

10000 1600 1

0.7690 5000 320 4
0.7700 5000 320 4
0.7710 5000 320 4
0.7720 5000 320 4

present precision. The performance on Fujitsu VPP500/40 is 426 MUPS per processor
with magnetization counting at every step. It becomes 541 MUPS only for spin update.
We execute the simulations listed in table 5. The simulation is made upajosteps
from the all-up state fow, different bond configurations. For each bond configuratign,
independent runs are performed. Values of time-dependent magnetizationis estimated
at every step. The number of totally updated spins.& % 10'°, which takes about 1200
single-processor hours on VPP.

The values of local exponentr) are estimated from the least-square fitting:af) in
the time interval of 50 steps. They are plotted in figures 4. The curvey fgr0.7670
go up when 1r goes to 0 (see figure H)), and those forp > 0.7677 go down (see
figure 4{d)). While the data forp = 0.7670 in figure 4§) are somehow subtle to decide
the phase, we recognize it in the PM phase because of the upward turns in the closest four
points to ¥ = 0. Therefore the MCPb¢ is located in 07670 < pme < 0.7677. We
therefore conclude thgt,. = 0.7673+ 0.0003. This means thdaf,. = 1.676+ 0.003.
This result is consistent with the results of the Monte Carlo renormalization group method
pme = 0.767(2) and series expansiopy,c = 0.765620) (see table 1).

The curve ofi(r) for p = 0.7670 (the lower limit ofpyc) is extrapolated to 0.093 for
1/t — 0, when we neglect the final upward turn (i.e. about seven points closg te @).
The curve forp = 0.7677 is extrapolated to 0.087 (the upper limitgf;), when we neglect
the final downward turn (i.e. about sixteen points close to 0). So we conclude that
Am = Ay = 0.090+ 0.003. This estimation is easily seen from the extrapolated values of



Multicritical dynamics for thetJ Ising Model 5461

CUBIC LATTICE

0.7650 ]
+  0.7660
Lo
e O 07674 -
g N % 07690 A
2 ] o X & 07700
S X7 O + 07710 |
& o 4 O 07720
@ X <§><> T
<] + [
= ++D O 1

0.02 0.04 0.06 0.08 0.1
1t

CUBIC LATTICE
NG

0.11

5L © o © o < 0.7660 |

H— + + + 0.7665
01 L+ * + i

+ + [10.7668
X 0.7670

local exponent

0005 [ Xy X -

0.09 1 1 1 1
0 0.001 0002 0.003 0.004 0.005
Ut

Figure 4. The estimated values af(¢) in three dimensions;b)—(d) are magnified figures of
(a). The values ofp are given in the figures.

A(¢) in figure 4¢) in which all concentrations are close enough to the MCP. If one assumes
the weak universality along the FM phase boundgny = 0.515 (the value ap = 1) and

7 =7 =5.74£0.2. These exponents are summarized in table 6 together with those obtained
to date at other points in the phase diagram.
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Figure 4. (Continued)

5. Summary and remarks

We examine the dynamical properties around the multicritical point foftthdsing model.
The exact equation (3.16) on the Nishimori-line derived from the ageing relation yields the
relations (3.18) and (3.19) for dynamic critical exponents of the FM and the SG orderings at
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Table 6. The present estimation for the dynamic critical exponent in three dimensions at
pme = 0.7673 with the previous estimations at= 1 (the pure FM case) [23] ang = 0.5 (the
SG case) [26].

14 Am Ag 2,2

1 0.250(2) 0.500(4) 2.06(2)
pmc  0.090(3) 0.090(3) 5.7(2)
0.5 0.061(9)  5.85(30)

the MCP. Analysing the non-equilibrium relaxation of the remanent magnetization calculated
by Monte Carlo simulation, we estimate the location of the MCP and the dynamic critical
exponentx,, which is identical withi,. Dynamical relations (3.16)—(3.19) are valid for
other gauge symmetric systems such as the Sherrington—Kirkpatrick model, the gauge glass
model and so on.

The MCP has a peculiar dynamical property,

dg = Am (5.1)
which is different from the pure FM case,
hg = 2. (5.2)

As mentioned in section 3, relation (5.2) seems to be correct along the FM phase boundary
from p = 1 up to the MCP. No such relation exists on the boundary below the temperature
of the MCP ind > 3.

It is helpful to consider the asymmetric Mattis model, which can be examined
analytically by the gauge transformation technique [41]. The Hamiltonian is similar to
equation (2.1);

H:—J ZG,’GjS{Sj. (53)
(i)

The variableqo;} obey the probability distribution
P({o}) o exp(—Ko Y _ 0i0)) (5.4)

)
where To = J/kgKo controls the randomness. It is found that the phase diagram
has the same topology as in theJ Ising model; the multicritical point is located at
(To, T) = (Tg, Tc). Physical quantities atTy, T) are related to those in the pure system.
The following relations fomn(¢) andgq(¢) at (Ty, T) are easy to derive:

m(t) = (S;(1)S;(0))" (5.5)
q (1) = (Si()Si(0))eq (5.6)

where averages on the r.h.s. are defined for the pure FM system. Although values of
exponents are different between two models, the relation (5.2) is valid along the FM phase
boundary up to the MCP, and (5.1) holds at the MCP. Sineg remains finite for — oo
on the boundary below the MCP, such a relation does not hold. The critical relaxation
below the MCP is equivalent to the non-equilibrium relaxation from the equilibrium state
atT = T, to T < T,. We expect this relaxation has the same power-law with critical
relaxation.

Dynamic critical exponents are estimated for two and three dimensions by the non-
equilibrium relaxation of magnetization calculated by Monte Carlo simulation. This
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technique is quite accurate in determining the critical point. The estimated dynamic critical
exponent is accurate, while it is very sensitive to the determination of the critical point. From
tables 4 and 6, itis indicated that dynamic exponeptanda,, decrease as the concentration
decreases. It would be interesting to know whether these exponents are universal for finite
intervals and immediately change at particular concentration(s) or change gradually with
the concentration.

The non-equilibrium relaxation method can be applied to other complex phase transitions
with slow relaxation. To do so, it is necessary to prepare a (full) ordered state as an
initial state of non-equilibrium relaxation. In the case of the SG transition, for example,
the equilibrium autocorrelation functiop(z) is somehow difficult to calculate accurately,
because of the slow relaxation for both equilibration and averaging processes. Furthermore,
the preparation of the ordered initial state is not unique nor straightforward. Huse [42]
defined an overlap of spin states between the random initial state and the state relaxed in a
heat bath,

qo(t) = [(S: (1)S: (0))F]. (5.7)

However, from the ageing relation (3.13h(¢) = m(¢) is derived if p = % Theoretically,
it is not obvious that the critical relaxation for the SG ordering appears in the relaxation of
the remanent magnetization. The remanent replica-overlap function,

qr(t) = [(SHD) S2(1))F]c (5.8)

could be used as a relaxation function, while the initial state is still out of ordering. Further
investigation is necessary in this direction.
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